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Abstract 

 

Using information residing in connected vehicle (CV) Basic Safety Message (BSM) data, this 

study develops an algorithm that is capable of identifying the location of unwanted objects, or 

debris, on road segments. Vehicles’ lateral accelerations are used to detect lane changing and 

swerving behavior to create density maps pinpointing to the locations with high frequency of 

swerving behavior and thus debris locations. Two vehicles were used to collect the required data 

on a selected US DOT Tampa CV Pilot road segment. A portion of the data was used to fine-

tune the algorithm parameters and the rest was used to test its ability to locate the object on the 

road. The overall accuracy of the algorithm to detect individual lane changes is 96 percent. 

Coupling the algorithm with density diagrams, debris locations can be identified almost 

precisely. The algorithm has the potential of reducing time and money spent by state and local 

agencies in patrolling to identify and remove debris from the road, as well as reducing the risk of 

crashes caused by drivers’ swerving behavior in avoiding debris on the road. 

  



 

 

 

 

 

 

Chapter I: Introduction 

 

Roadway debris and other unexpected obstructions, such as surface damage can lead to 

significant traffic delays or worse, crashes. The presence of roadway debris is particularly 

concerning in high-traffic and high-speed roadways where dense traffic conditions reduce 

visibility and large volumes of vehicles are exposed to risk. According to the Florida Department 

of Highway Safety and Motor Vehicles (DHSMV), in 2018 there were 2,949 crashes resulting in 

702 injuries and 17 fatalities, where the main contributing cause was an obstruction in the 

roadway or debris [1]. Although prevention of the various causes of obstructions and defensive 

driving can reduce these consequences, the problem cannot be eliminated entirely. Currently, 

unexpected roadway obstructions are handled by relying on drivers’ self-reporting (e.g., the 

Waze app) or through local maintenance departments, which is either unsafe because it can lead 

to distracted driving or not cost effective. In addition, pinpointing the exact debris location can 

be challenging and adds to delays between notification and actual removal from the responsible 

transportation agency. This study takes advantage of information residing in Basic Safety 

Messages (BSM) generated by connectively-enhanced vehicles as part of the US DOT 

Connected Vehicle (CV) Pilot Deployment, Tampa, Florida, to develop algorithms for 

identifying the location of debris. As CV market penetration increases, the results become more 

accurate due to more data availability in a specific time and road segment. The debris location 

information can dispatched to local or state transportation, traffic, and maintenance agencies to 

improve the process of addressing road debris and other road hazards. In addition to providing 

the coordinates of possible hazards, the algorithm can provide a timelier and safer identification 

of road hazards compared to existing methods. For instance, currently in the State of Florida, the 

Traffic Incident Management Program addresses road debris and hazards. Drivers can call the 

Florida Highway Patrol (FHP) by phone. FHP then deploys the district’s maintenance to the 

location to address congestion and safety issues for quick roadway clearance. The Florida 

Department of Transportation’s Road Rangers also continuously patrol the roadways looking for 

debris and disabled vehicles. Utilizing real-time data generated from connected vehicles, this tool 

has the potential to provide a large benefit and cost-savings over the current methods for 

identifying road hazards. 

An AAA Foundation research [2] estimated that road debris was one of the contributing 

factors in 202,631 police reported crashes from 2011 to 2014 that resulted in 501 deaths and 

39,220 injuries. While no studies explicitly developed methods to detect debris on the roads for 

quick response and removal, the detection of foreign object debris (FOD) on airports runways is 

a topic of interest in the aviation industry [3]. As the region of interest in airports is much smaller 

when compared to roads, most of the developed detection methods rely on sensors such as 

imaging, millimeter-wave, Radar, and LiDAR [4-6]. A noise filtering algorithm along with a 

background subtraction technique were used to process and detect objects from images taken 

from objects on an airport surface [5]. In another study [6] LiDAR technology was used to detect 

objects on airport surface using an autonomous rover. Although technologies such as LiDAR and 

Radar are proposed and even used in vehicles for surrounding object detection and driving assists 

[7-14], the detections are beneficial and limited to vehicles having those technologies and they 

cannot be used at the aggregate level by agencies or highway patrols for removing unwanted 

objects and debris in a timely manner. Lehtomäki et al. [7] used vehicle based laser scanning to 

detect pole-like objects e.g., traffic lights, tree trunks with the accuracy of 81%. Kato et al. [9] 



 

 

 

 

 

 

proposed a method that fuses information from Radar and a camera capable of detecting moving 

and stationary objects such as vehicle, pedestrian in host vehicle path. However, the experiments 

were done with vehicles and pedestrian as objects and with no debris and other foreign objects. 

Munawar and Creusot [11] proposed a method to detect anomalies on roads using a machine 

learning algorithm applied to images taken from a camera in front of the host vehicle. Similarly 

in another study [12], a system for detection and tracking of objects (i.e. Vehicles, pedestrians, 

cyclists) through processing of images coming from a mounted camera and applying Color Road 

Background Model and Entropy. Other studies [13, 14] added real-time detection features to 

their algorithms for on-road object detection. Therefore, there exists a gap in the literature: the 

detection of debris and foreign objects on roads at the aggregate level for the safety benefit of 

traffic system (as opposed to algorithms that detect objects for the benefit of individual vehicles). 

One of the emerging sources of data to address the road debris problem more efficiently 

is connected vehicles. To effectively deploy vehicle-to-vehicle (V2V), vehicle-to-infrastructure 

(V2I) applications, connected vehicles exchange information via basic safety messages (BSM). 

BSM data contain detailed information on vehicles kinematics and locations broadcasted at high 

frequency (up to ten times per second). As BSM data become more available, their potential in 

providing useful information for traffic mobility and safety purposes becomes more relevant. 

Previous studies have used such data to address safety and mobility problems from new 

perspectives [15-18]. By using BSM data, the method proposed in this study provides an 

innovative, yet feasible and low-cost, approach to identify debris locations as such data become 

more common and available to agencies and highway patrols. 

  



 

 

 

 

 

 

Chapter II: Methodology and Data Collection 

The research focus is on detection of lane changes from vehicle kinematics. In particular, 

an initial analysis of the Tampa CV Pilot data revealed that among vehicle kinematics, lateral 

acceleration is the parameter to use because there is not relative variability in other parameters 

such as longitudinal acceleration and speed during the short period of a typical lane change. To 

develop the detection algorithm and fine-tune the parameters, this study used two test vehicles 

from the Tampa CV Pilot: one vehicle belonging to the principal investigator for this project and 

one fleet vehicle provided by the Tampa-Hillsborough Expressway Authority (THEA). THEA 

owns and operates the Selmon Expressway and the Reversible Express Lanes (REL), a reversible 

elevated express lane, an all-electronic toll (AET) facility that serves as a main commuter route, 

connecting the bedroom community of Brandon with downtown Tampa. The REL system is at 

the core of the Tampa CV Pilot deployment and served as the testbed for this project tests. The 

facility provides a contained environment in which to safely test and refine the road-debris-

identifying algorithms. THEA has established three, elevated lanes known as the Reversible 

Expressway Lanes (REL) for westbound traffic during the morning commute and for eastbound 

traffic during the evening commute and weekends. In the interim, as the lanes are closed to all 

traffic before changing the direction of traffic flow, the REL provide a contained environment in 

which simulated road debris can provide the opportunity to observe, test, and refine the road 

debris identifying algorithms using real-time connected vehicle data from THEA’s own 

connected vehicles. In addition to CV fleet, THEA provided support in ensuring REL availability 

and closure to the public during testing (Figure 1).  

 

 
Figure 1 THEA Selmon Expressway System 

 



 

 

 

 

 

 

Experimental Data Generation 

Figure 2 shows the location of the experiment area within the REL system. A 28-inch 

orange traffic cone served as the “debris” for the experiment. Since avoiding an object on the 

road requires swerving or lane change behavior, multiple runs of these behaviors were 

experimented for the analysis. The data collection resulted in about 50,000 valid BSMs. 

 

 
Figure 2 Experiment Location 

 

Figure 3 reports the variation in vehicle speed, longitudinal and lateral acceleration for 

one of the lane changing runs where each vehicle broadcasts 1 BSM every tenth of a second. For 

comparison, the speed is in meters per second (m/s) and the y-axis has a limited the range of 3 

m/s. The right side of the figure plots individual longitude and latitude observations on the road 

segment. The red boxes show the moments of lane change. The figure indicates that during a 

typical lane change, there exist significant fluctuations in lateral acceleration, while variations in 

the speed and longitudinal acceleration are not considerable. 

Focusing on lateral acceleration, as shown in Figure 3 not all observations during the lane 

change can a priori be considered as extreme values. Therefore, to detect those observations 

within normal range, typical time series anomaly-detection methods, which mostly work on 

remainders (i.e. residuals of the time series after removal of other components) of time series, do 

not work. In our initial analysis, we tested the following approaches, which did not yield 

satisfactory results in detecting lane changes: Seasonal Decomposition of Time Series (STL) 

[19], Twitter Anomaly Detection [20], Inner Quartile Range (IQR) and Generalized Extreme 

Studentized Deviate Test (GESD) [21].  

 



 

 

 

 

 

 

 
Figure 3 Vehicle speed and acceleration profiles during a lane change 

 
Proposed Algorithm 

To address the limits of the currently available anomaly-detection methods, the proposed 

algorithm relies on five tunable parameters:  

1. Absolute threshold: observations beyond this value are flagged as initial anomalous 

values. 

2. Relative threshold: this helps the algorithm detect those observations that are 

considerably higher than the mean of the sample. Particularly at curves, lateral 

acceleration values increase. Solely relying on the absolute value for flagging leads to 

mistakenly including observations at curves as part of the lane changing. To avoid 

this, the algorithm calculates the absolute deviation of individual observations and 

compares it with the relative threshold. This is also helpful in flagging observations 

belonging to a lane change that precedes or follows the local minimums and 

maximums e.g., points 25 to 27 and 29 to 32 in lateral acceleration plot (where point 

28 is the maximum) in Figure 3. 

3. Number of bridging points: this parameter is used to consider the observations 

connecting local maximum to local minimum points as part of a lane change. 



 

 

 

 

 

 

Commonly, as per analysis on collected data, there exist a local maximum and local 

minimum, which are detected via the absolute threshold. The sequence of their 

appearance in the data depends on the direction of the lane change i.e. right to left and 

left to right because of the positive and negative lateral acceleration definition per 

Society of Automotive Engineers (SAE) J2735 standard on BSM data structure [22]. 

There are also observations in between, some of which are flagged through the 

absolute and relative thresholds. However, those lateral acceleration values around 

zero that are part of a lane change remain undetected due to their within-normal-range 

values. Not considering them as a part of lane change will cause an overestimated 

number of lane changes. Therefore, by setting the number of bridging points, the 

algorithm is able address this issue. 

4. Minimum number of consecutive points: having detected lane change observations 

through the above three parameters, the algorithm also checks if the number of flagged 

observations meets a minimum number of consecutive points. This parameter is 

beneficial in working with high resolution data (i.e., BSM data generation rate). For 

instance, if the data are generated at a rate of one observation per second, observing 

three or more consecutive flagged observations is enough to be considered as a lane 

change while in 0.1-second data, this parameter should be set to at least 10. If the 

number of flagged observations is below this parameter, they will be dropped. 

5. Moving average parameter: high-resolution data can be smoothed and used instead 

of using raw data. If this parameter is set to 1, raw data are used. 

The steps of the algorithm are as follows: 

1. INPUT parameters 1 to 5 (explained above and shown below in red). 

2. READ lateral acceleration vector from BSM dataset. 

3. REPLACE it with calculated moving average values using movingAveragePar, call it 

“x”. 

4. FOR all xi ∈ x  IF: 

i. (xi ≥ absThreshold OR xi ≤ absThreshold )AND 

ii. (|xi – mean (x)|) ≥ relThreshold) 

iii. THEN: Flag xi as an initial member of a lane change. 

5. IF number of observations between two consecutive flagged xi’s ≤ numBridgPoint  

i. THEN: flag those observations in between as initial member of the lane 

change. 

6. FOR each series of lane change (LCj) IF: length LCj ≤ minNumConsPoint 

      THEN: keep LCj as finalized lane change 

            ELSE: drop LCj 

7. RETURN longitudes and latitudes of finalized lane changes. 

Per the algorithm steps, the process identifies the moments of lane changes and their locations 

can be obtained for purpose of pinpointing debris on the road. Note that as debris might cause 

more drastic lane changes, the absolute and relative threshold parameters can be fine-tuned to 

exclude regular or smoother lane changes from the ones that occurred due to debris presence.  

 



 

 

 

 

 

 

Input Data 

The final dataset consists of 17 lane change runs on the REL. Of these, 13 have one-lane 

changes (to avoid the cone), three have two-lane changes, one three-lane changes, for a total of 

22 lane changes. To test false positives, four lane-keeping driving runs were also generated. 

After downloading from the vehicle, the data were error checked, cleaned and the 17 individual 

lane-change profiles were labeled (i.e., individual lane change, no lane change, and swerve) for 

subsequent testing of algorithm performance. The data contain BSM Part I core elements, 

including vehicle longitude, latitude, speed, lateral and longitudinal acceleration, and heading. 

As discussed in the methodology section, the lateral acceleration was used for the development 

of the algorithm.  

  



 

 

 

 

 

 

Chapter III: Results 

Lane Change Detection 

The algorithm was applied to the data to investigate its ability to detect lane changes. The 

confusion matrix of Table 1 summarizes the results of the algorithm’s accuracy. The algorithm 

was able to correctly detect 12 out of 13 one-lane changes and all multiple-lane (two-lane and 

three-lane) changes. Then the algorithm was tested to detect no-lane changes over the four no-

lane change runs. In all four cases, the algorithm correctly classified the runs as no-lane change 

runs. Figure 4 shows lateral acceleration value of driving profiles characterizing multiple lane 

changing behavior. For better illustration, the correct and incorrect lane change detections are 

indicated using green (correct) and red (incorrect) polygons overlaid on the figure.  

 
Table 1 Algorithm Accuracy Confusion Matrix 

 Algorithm Classified 

as 
 

Lane 

Change 

Not Lane 

Change 
Accuracy 

Ground 

Truth 

Lane 

Change 
21 1 95% 

Not Lane 

Change 
0 4 100% 

 Total 96% 

 

 
Figure 4 Lateral acceleration of driving profiles with multiple-lane changes 



 

 

 

 

 

 

When testing over multiple lane changes, the algorithm identified four lane changes that 

were not explicitly generated as part of the vehicle runs. The four misclassifications are shown in 

Figure 4.A and Figure 4.B, two of which are indeed the continuation of previously detected lane 

changes. As the figure shows, there are less than a second apart. It is interesting to note that both 

A and B driving profiles are at a curved part of the road making it a more difficult for the 

algorithm to avoid false positives. The algorithm performed well in driving profiles C and D. As 

noted in the methodology section, increasing the number of bridging points can solve this issue. 

However, the parameters were left unchanged for consistency and to assess the performance of 

the algorithm under different conditions. Different parameters can be tuned for straight and 

curved road segments to increase lane-detection accuracy. When it comes to identifying the 

locations of debris, false positives will not affect the results as we discuss next. 

 
Debris Location Identification 

In this step, the algorithm was applied to the object avoidance experimental data. During 

the two experiments with two different vehicles and drivers, 13 cone-avoidance runs were 

attempted. To further challenge the algorithm, instead of introducing separate object avoidance 

profiles, the entire experiment dataset was used. Therefore, the dataset contains all lanes 

changes, including regular lane changes and U-turns that were taken to repeat the experiment 

along the REL. Figure 5 shows the moments where the algorithm detected the lane changes in 

red colored points. However, lane changes due to object avoidance are clustered in space but not 

necessarily so in time, reflecting traffic density and travel behavior as drivers approach to 

specific debris fixed in space at different times.  

Once the algorithm detects the lane change moments, their geocoded locations are 

obtained and a density heat-map is created to spatially identify the location of the debris (i.e., the 

cone in our experiment), as shown in Figure 6. The density graph is in fact a two-dimensional 

kernel density estimation with an axis-aligned bivariate normal kernel, evaluated on a square grid 

[23]. Regular lane changes, U-turns, as well as false positives will be less dense in space 

compared to the lane changes due to debris. Conversely, the density will be higher around the 

debris locations because more lane changes are observed from different drivers. In the case of 

real-world data, the probability that the algorithm generates false positives in the same location 

for different drivers is low and thus it does not affect the results. Those moments are spread 

across time and space and depicted as ellipses in the heat map showing the area(s) on which the 

lane changes happened. The ellipse shown in the left quadrant of Figure 6 has as semi-minor axis 

length of 200 ft., which indicates the approximate average length of lane changes to avoid the 

cone. The plus sign indicates that the location of the cone as detected by the algorithm 

(27.9555197, -82.4442500), which is 3.68 ft. (82 cm) from the location of the actual location of 

the cone (27.9555198, -82.4442406).  

The algorithm was also able to estimate the location of the cone for the second 

experiment, as shown in the right quadrant of Figure 6. In this instance, the estimated location is 

180 ft. from the actual location of the cone. This is because the centers of the ellipses correspond 

to the highest density areas of the heat maps, which are created based on the density of seconds 

flagged as part of lane changes. As noted earlier, lane changes show themselves as event 

durations in the data rather than exact moments and account for the heterogeneous response of 

drivers to the debris presence. Indeed, different drivers might initiate lane changes at different 

distances to objects on the road. Therefore, the center of ellipses is considered as a proxy for the 

location of objects rather than exact locations.  



 

 

 

 
Figure 5 Lane-change moments detected by the algorithm (shown in red) 

 
Figure 6 Density heat map showing the test cone (i.e., debris) location (Left: experiment 1, Right: experiment 2) 

 

 

 

 
Conclusion 

Roadway debris, potholes, or other unexpected obstructions can lead to significant traffic 

delays or worse, crashes. These roadway obstructions are particularly concerning in high-traffic 

and high-speed roadways where dense traffic conditions reduce visibility and large volumes of 

vehicles are exposed to risk. Although prevention of the various causes of these obstructions and 

defensive driving can reduce these consequences, the problem cannot be eliminated entirely. The 

existing manner in which unexpected roadway obstructions are handled is by driver reporting, 

which is inefficient because the act of reporting while driving can lead to distracted driving 

Using self-reported information can result in the untimely removal of the debris or in excessive 

resources deployed to swipe a high risk corridor to remove unexpected objects.   

 



 

 

 

 

 

 

The objective of this project was to create a tool that can be used by local or state 

transportation, traffic, and maintenance agencies to improve the process of addressing road 

debris and other road hazards. This research developed a debris spotting algorithm the relies on 

high-frequency connected vehicle data. The algorithm is able accurately pinpoint obstruction 

objects by identifying lane change moments of individual drivers by monitoring their vehicles’ 

lateral acceleration values. In the case of road hazard and debris, drivers’ exhibit swerving and 

lane changing behaviors when they approach objects on the road. Thus, the algorithm is able to 

identify road debris locations by identifying repeated swerving and lane changes by different 

drivers. The algorithm parameters were fine-tuned using experimental data from two vehicles 

from the USDOT Tampa CV pilot sending their BSM data to road side units (RSUs), and 

ultimately to the local Traffic Monitoring Center (TMC). The overall accuracy of the algorithm 

in lane changing and swerving detection is about 96 percent. Finally, the algorithm’s output 

generated a series of spatial heat maps reporting the approximate coordinates of the debris. With 

the increased installation of RSUs to cover the entire traffic network of major urban areas, TMCs 

can inject the algorithm’s output in their monitoring platforms and utilize the heat maps for fast 

and efficient debris-removal dispatching. Since the current state of practice to address road 

debris rely on drivers’ reports or continuous roaming of state patrols or city agencies, this tool 

can provide large benefits in identifying road hazards in terms of response time, accuracy and 

cost savings. 

 

  



 

 

 

 

 

 

References 

1. FIRES. Florida Integrated Report Exchange System. 2019  [cited 2019 March 20]; 

Available from: https://firesportal.com/Pages/Public/Home.aspx. 

2. Tefft, B.C., The Prevalence of Motor Vehicle Crashes Involving Road Debris, United 

States, 2011-2014. Age (years), 2016. 20(5.7): p. 10.1. 

3. Patterson Jr, J., Foreign object debris (fod) detection research. International Airport 

Review, 2008. 11(2): p. 22-7. 

4. Nsengiyumva, F., et al. Millimeter-wave imaging of foreign object debris (FOD) based 

on two-dimensional approach. in 2015 IEEE Conference on Antenna Measurements & 

Applications (CAMA). 2015. IEEE. 

5. Qunyu, X., N. Huansheng, and C. Weishi. Video-based foreign object debris detection. in 

2009 IEEE International Workshop on Imaging Systems and Techniques. 2009. IEEE. 

6. Elrayes, A., et al., Smart airport foreign object debris detection rover using LiDAR 

technology. Internet of Things, 2019. 5: p. 1-11. 

7. Lehtomäki, M., et al., Detection of vertical pole-like objects in a road environment using 

vehicle-based laser scanning data. Remote Sensing, 2010. 2(3): p. 641-664. 

8. Suzuki, T. and T. Kanade, Method and apparatus for environment recognition. 2003, 

Google Patents. 

9. Kato, T., Y. Ninomiya, and I. Masaki, An obstacle detection method by fusion of radar 

and motion stereo. IEEE transactions on intelligent transportation systems, 2002. 3(3): p. 

182-188. 

10. Stein, G., A. Shashua, and Y. Gdalyahu, Fusion of far infrared and visible images in 

enhanced obstacle detection in automotive applications. 2016, Google Patents. 

11. Munawar, A. and C. Creusot. Structural inpainting of road patches for anomaly 

detection. in 2015 14th IAPR International Conference on Machine Vision Applications 

(MVA). 2015. IEEE. 

12. Goecke, R., N. Pettersson, and L. Petersson. Towards detection and tracking of on-road 

objects. in 2007 IEEE Intelligent Vehicles Symposium. 2007. IEEE. 

13. Kubota, S., T. Nakano, and Y. Okamoto. A global optimization algorithm for real-time 

on-board stereo obstacle detection systems. in 2007 IEEE Intelligent Vehicles 

Symposium. 2007. IEEE. 

14. Creusot, C. and A. Munawar. Real-time small obstacle detection on highways using 

compressive RBM road reconstruction. in 2015 IEEE Intelligent Vehicles Symposium 

(IV). 2015. IEEE. 

15. Kamrani, M., R. Arvin, and A.J. Khattak, Extracting useful information from Basic Safety 

Message Data: an empirical study of driving volatility measures and crash frequency at 

intersections. Transportation Research Record, 2018: p. 0361198118773869. 

16. Bansal, G., et al., Traffic management based on basic safety message data. 2018, Google 

Patents. 

17. Kamrani, M., B. Wali, and A.J. Khattak, Can Data Generated by Connected Vehicles 

Enhance Safety? Proactive Approach to Intersection Safety Management. Transportation 

Research Record: Journal of the Transportation Research Board, 2017(2659): p. 80-90. 

18. Arvin, R., M. Kamrani, and A.J. Khattak, How instantaneous driving behavior 

contributes to crashes at intersections: extracting useful information from connected 

vehicle message data. Accident Analysis & Prevention, 2019. 127: p. 118-133. 

https://firesportal.com/Pages/Public/Home.aspx


 

 

 

 

 

 

19. Cleveland, R.B., et al., STL: A seasonal-trend decomposition. Journal of official 

statistics, 1990. 6(1): p. 3-73. 

20. Introducing practical and robust anomaly detection in a time series. 2015  [cited 2018 

March 14]; Available from: 

https://blog.twitter.com/engineering/en_us/a/2015/introducing-practical-and-robust-

anomaly-detection-in-a-time-series.html. 

21. Dancho, M. and D. Vaughan. Anomalize R Package. 2018; Available from: 

https://github.com/business-science/anomalize. 

22. SAE, J2735 Dedicated Short Range Communications (DSRC) Message Set Dictionary, 

SAE International. 2016. p. 43, 114. 

23. Ripley, B., Modern applied statistics with S. 2002, Springer, New York. 

  

https://blog.twitter.com/engineering/en_us/a/2015/introducing-practical-and-robust-anomaly-detection-in-a-time-series.html
https://blog.twitter.com/engineering/en_us/a/2015/introducing-practical-and-robust-anomaly-detection-in-a-time-series.html
https://github.com/business-science/anomalize


 

 

 

 

 

 

 

 

 


	Structure Bookmarks



Accessibility Report


		Filename: 

		conca_final.pdf




		Report created by: 

		

		Organization: 

		




[Enter personal and organization information through the Preferences > Identity dialog.]


Summary


The checker found problems which may prevent the document from being fully accessible.


		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 29

		Failed: 1




Detailed Report


		Document



		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content



		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms



		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text



		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Failed		Other elements that require alternate text

		Tables



		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists



		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings



		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting






Back to Top
